Metamath Proof Explorer
Description: 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
1ne0sr |
⊢ ¬ 1R = 0R |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltsosr |
⊢ <R Or R |
| 2 |
|
1sr |
⊢ 1R ∈ R |
| 3 |
|
sonr |
⊢ ( ( <R Or R ∧ 1R ∈ R ) → ¬ 1R <R 1R ) |
| 4 |
1 2 3
|
mp2an |
⊢ ¬ 1R <R 1R |
| 5 |
|
0lt1sr |
⊢ 0R <R 1R |
| 6 |
|
breq1 |
⊢ ( 1R = 0R → ( 1R <R 1R ↔ 0R <R 1R ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 1R = 0R → 1R <R 1R ) |
| 8 |
4 7
|
mto |
⊢ ¬ 1R = 0R |