Metamath Proof Explorer
		
		
		
		Description:  1 and 0 are distinct for signed reals.  (Contributed by NM, 26-Mar-1996)
     (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					1ne0sr | 
					⊢  ¬  1R  =  0R  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltsosr | 
							⊢  <R   Or  R  | 
						
						
							| 2 | 
							
								
							 | 
							1sr | 
							⊢ 1R  ∈  R  | 
						
						
							| 3 | 
							
								
							 | 
							sonr | 
							⊢ ( (  <R   Or  R  ∧  1R  ∈  R )  →  ¬  1R  <R  1R )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							mp2an | 
							⊢ ¬  1R  <R  1R  | 
						
						
							| 5 | 
							
								
							 | 
							0lt1sr | 
							⊢ 0R  <R  1R  | 
						
						
							| 6 | 
							
								
							 | 
							breq1 | 
							⊢ ( 1R  =  0R  →  ( 1R  <R  1R  ↔  0R  <R  1R ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpbiri | 
							⊢ ( 1R  =  0R  →  1R  <R  1R )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							mto | 
							⊢ ¬  1R  =  0R  |