Metamath Proof Explorer


Theorem 0nelrel

Description: A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021)

Ref Expression
Assertion 0nelrel
|- ( Rel R -> (/) e/ R )

Proof

Step Hyp Ref Expression
1 0nelrel0
 |-  ( Rel R -> -. (/) e. R )
2 df-nel
 |-  ( (/) e/ R <-> -. (/) e. R )
3 1 2 sylibr
 |-  ( Rel R -> (/) e/ R )