Description: The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | 0opn | |- ( J e. Top -> (/) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0 | |- U. (/) = (/) |
|
2 | 0ss | |- (/) C_ J |
|
3 | uniopn | |- ( ( J e. Top /\ (/) C_ J ) -> U. (/) e. J ) |
|
4 | 2 3 | mpan2 | |- ( J e. Top -> U. (/) e. J ) |
5 | 1 4 | eqeltrrid | |- ( J e. Top -> (/) e. J ) |