| Step |
Hyp |
Ref |
Expression |
| 1 |
|
olc |
|- ( J = { (/) } -> ( J = (/) \/ J = { (/) } ) ) |
| 2 |
|
0opn |
|- ( J e. Top -> (/) e. J ) |
| 3 |
|
n0i |
|- ( (/) e. J -> -. J = (/) ) |
| 4 |
2 3
|
syl |
|- ( J e. Top -> -. J = (/) ) |
| 5 |
4
|
pm2.21d |
|- ( J e. Top -> ( J = (/) -> J = { (/) } ) ) |
| 6 |
|
idd |
|- ( J e. Top -> ( J = { (/) } -> J = { (/) } ) ) |
| 7 |
5 6
|
jaod |
|- ( J e. Top -> ( ( J = (/) \/ J = { (/) } ) -> J = { (/) } ) ) |
| 8 |
1 7
|
impbid2 |
|- ( J e. Top -> ( J = { (/) } <-> ( J = (/) \/ J = { (/) } ) ) ) |
| 9 |
|
uni0b |
|- ( U. J = (/) <-> J C_ { (/) } ) |
| 10 |
|
sssn |
|- ( J C_ { (/) } <-> ( J = (/) \/ J = { (/) } ) ) |
| 11 |
9 10
|
bitr2i |
|- ( ( J = (/) \/ J = { (/) } ) <-> U. J = (/) ) |
| 12 |
8 11
|
bitr2di |
|- ( J e. Top -> ( U. J = (/) <-> J = { (/) } ) ) |