Metamath Proof Explorer


Theorem 19.31vv

Description: Theorem *11.44 in WhiteheadRussell p. 163. Theorem 19.31 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 19.31vv
|- ( A. x A. y ( ph \/ ps ) <-> ( A. x A. y ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 19.31v
 |-  ( A. y ( ph \/ ps ) <-> ( A. y ph \/ ps ) )
2 1 albii
 |-  ( A. x A. y ( ph \/ ps ) <-> A. x ( A. y ph \/ ps ) )
3 19.31v
 |-  ( A. x ( A. y ph \/ ps ) <-> ( A. x A. y ph \/ ps ) )
4 2 3 bitri
 |-  ( A. x A. y ( ph \/ ps ) <-> ( A. x A. y ph \/ ps ) )