Description: Theorem *11.44 in WhiteheadRussell p. 163. Theorem 19.31 of Margaris p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.31vv | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∨ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.31v | ⊢ ( ∀ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑦 𝜑 ∨ 𝜓 ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦 𝜑 ∨ 𝜓 ) ) |
3 | 19.31v | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∨ 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∨ 𝜓 ) ) |