Description: The set of unary (endo)functions and the base set of the monoid of endofunctions are equinumerous. (Contributed by AV, 19-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 1aryenefmnd | |- ( 1 -aryF X ) ~~ ( Base ` ( EndoFMnd ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1aryenef | |- ( 1 -aryF X ) ~~ ( X ^m X ) |
|
2 | eqid | |- ( EndoFMnd ` X ) = ( EndoFMnd ` X ) |
|
3 | eqid | |- ( Base ` ( EndoFMnd ` X ) ) = ( Base ` ( EndoFMnd ` X ) ) |
|
4 | 2 3 | efmndbas | |- ( Base ` ( EndoFMnd ` X ) ) = ( X ^m X ) |
5 | 1 4 | breqtrri | |- ( 1 -aryF X ) ~~ ( Base ` ( EndoFMnd ` X ) ) |