Metamath Proof Explorer


Theorem 1aryenefmnd

Description: The set of unary (endo)functions and the base set of the monoid of endofunctions are equinumerous. (Contributed by AV, 19-May-2024)

Ref Expression
Assertion 1aryenefmnd 1 -aryF X Base EndoFMnd X

Proof

Step Hyp Ref Expression
1 1aryenef 1 -aryF X X X
2 eqid EndoFMnd X = EndoFMnd X
3 eqid Base EndoFMnd X = Base EndoFMnd X
4 2 3 efmndbas Base EndoFMnd X = X X
5 1 4 breqtrri 1 -aryF X Base EndoFMnd X