Metamath Proof Explorer


Theorem 1aryenef

Description: The set of unary (endo)functions and the set of endofunctions are equinumerous. (Contributed by AV, 19-May-2024)

Ref Expression
Assertion 1aryenef 1 -aryF X X X

Proof

Step Hyp Ref Expression
1 ovex 1 -aryF X V
2 1 mptex f 1 -aryF X x X f 0 x V
3 2 a1i X V f 1 -aryF X x X f 0 x V
4 eqid f 1 -aryF X x X f 0 x = f 1 -aryF X x X f 0 x
5 4 1arymaptf1o X V f 1 -aryF X x X f 0 x : 1 -aryF X 1-1 onto X X
6 f1oeq1 h = f 1 -aryF X x X f 0 x h : 1 -aryF X 1-1 onto X X f 1 -aryF X x X f 0 x : 1 -aryF X 1-1 onto X X
7 3 5 6 spcedv X V h h : 1 -aryF X 1-1 onto X X
8 bren 1 -aryF X X X h h : 1 -aryF X 1-1 onto X X
9 7 8 sylibr X V 1 -aryF X X X
10 0ex V
11 10 enref
12 11 a1i ¬ X V
13 df-naryf -aryF = n 0 , x V x x 0 ..^ n
14 13 reldmmpo Rel dom -aryF
15 14 ovprc2 ¬ X V 1 -aryF X =
16 reldmmap Rel dom 𝑚
17 16 ovprc1 ¬ X V X X =
18 12 15 17 3brtr4d ¬ X V 1 -aryF X X X
19 9 18 pm2.61i 1 -aryF X X X