Metamath Proof Explorer


Theorem 1egrvtxdg1r

Description: The vertex degree of a one-edge graph, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1egrvtxdg1.v
|- ( ph -> ( Vtx ` G ) = V )
1egrvtxdg1.a
|- ( ph -> A e. X )
1egrvtxdg1.b
|- ( ph -> B e. V )
1egrvtxdg1.c
|- ( ph -> C e. V )
1egrvtxdg1.n
|- ( ph -> B =/= C )
1egrvtxdg1.i
|- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } )
Assertion 1egrvtxdg1r
|- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 )

Proof

Step Hyp Ref Expression
1 1egrvtxdg1.v
 |-  ( ph -> ( Vtx ` G ) = V )
2 1egrvtxdg1.a
 |-  ( ph -> A e. X )
3 1egrvtxdg1.b
 |-  ( ph -> B e. V )
4 1egrvtxdg1.c
 |-  ( ph -> C e. V )
5 1egrvtxdg1.n
 |-  ( ph -> B =/= C )
6 1egrvtxdg1.i
 |-  ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } )
7 5 necomd
 |-  ( ph -> C =/= B )
8 prcom
 |-  { B , C } = { C , B }
9 8 a1i
 |-  ( ph -> { B , C } = { C , B } )
10 9 opeq2d
 |-  ( ph -> <. A , { B , C } >. = <. A , { C , B } >. )
11 10 sneqd
 |-  ( ph -> { <. A , { B , C } >. } = { <. A , { C , B } >. } )
12 6 11 eqtrd
 |-  ( ph -> ( iEdg ` G ) = { <. A , { C , B } >. } )
13 1 2 4 3 7 12 1egrvtxdg1
 |-  ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 )