Description: The vertex degree of a one-edge graph, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 1egrvtxdg1.a | |- ( ph -> A e. X ) |
||
| 1egrvtxdg1.b | |- ( ph -> B e. V ) |
||
| 1egrvtxdg1.c | |- ( ph -> C e. V ) |
||
| 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
||
| 1egrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
||
| Assertion | 1egrvtxdg1r | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1egrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 2 | 1egrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 3 | 1egrvtxdg1.b | |- ( ph -> B e. V ) |
|
| 4 | 1egrvtxdg1.c | |- ( ph -> C e. V ) |
|
| 5 | 1egrvtxdg1.n | |- ( ph -> B =/= C ) |
|
| 6 | 1egrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
|
| 7 | 5 | necomd | |- ( ph -> C =/= B ) |
| 8 | prcom | |- { B , C } = { C , B } |
|
| 9 | 8 | a1i | |- ( ph -> { B , C } = { C , B } ) |
| 10 | 9 | opeq2d | |- ( ph -> <. A , { B , C } >. = <. A , { C , B } >. ) |
| 11 | 10 | sneqd | |- ( ph -> { <. A , { B , C } >. } = { <. A , { C , B } >. } ) |
| 12 | 6 11 | eqtrd | |- ( ph -> ( iEdg ` G ) = { <. A , { C , B } >. } ) |
| 13 | 1 2 4 3 7 12 | 1egrvtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 ) |