| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1egrvtxdg1.v |
|- ( ph -> ( Vtx ` G ) = V ) |
| 2 |
|
1egrvtxdg1.a |
|- ( ph -> A e. X ) |
| 3 |
|
1egrvtxdg1.b |
|- ( ph -> B e. V ) |
| 4 |
|
1egrvtxdg1.c |
|- ( ph -> C e. V ) |
| 5 |
|
1egrvtxdg1.n |
|- ( ph -> B =/= C ) |
| 6 |
|
1egrvtxdg0.d |
|- ( ph -> D e. V ) |
| 7 |
|
1egrvtxdg0.n |
|- ( ph -> C =/= D ) |
| 8 |
|
1egrvtxdg0.i |
|- ( ph -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
| 9 |
1
|
adantl |
|- ( ( B = D /\ ph ) -> ( Vtx ` G ) = V ) |
| 10 |
2
|
adantl |
|- ( ( B = D /\ ph ) -> A e. X ) |
| 11 |
3
|
adantl |
|- ( ( B = D /\ ph ) -> B e. V ) |
| 12 |
8
|
adantl |
|- ( ( B = D /\ ph ) -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
| 13 |
|
preq2 |
|- ( D = B -> { B , D } = { B , B } ) |
| 14 |
13
|
eqcoms |
|- ( B = D -> { B , D } = { B , B } ) |
| 15 |
|
dfsn2 |
|- { B } = { B , B } |
| 16 |
14 15
|
eqtr4di |
|- ( B = D -> { B , D } = { B } ) |
| 17 |
16
|
adantr |
|- ( ( B = D /\ ph ) -> { B , D } = { B } ) |
| 18 |
17
|
opeq2d |
|- ( ( B = D /\ ph ) -> <. A , { B , D } >. = <. A , { B } >. ) |
| 19 |
18
|
sneqd |
|- ( ( B = D /\ ph ) -> { <. A , { B , D } >. } = { <. A , { B } >. } ) |
| 20 |
12 19
|
eqtrd |
|- ( ( B = D /\ ph ) -> ( iEdg ` G ) = { <. A , { B } >. } ) |
| 21 |
5
|
necomd |
|- ( ph -> C =/= B ) |
| 22 |
4 21
|
jca |
|- ( ph -> ( C e. V /\ C =/= B ) ) |
| 23 |
|
eldifsn |
|- ( C e. ( V \ { B } ) <-> ( C e. V /\ C =/= B ) ) |
| 24 |
22 23
|
sylibr |
|- ( ph -> C e. ( V \ { B } ) ) |
| 25 |
24
|
adantl |
|- ( ( B = D /\ ph ) -> C e. ( V \ { B } ) ) |
| 26 |
9 10 11 20 25
|
1loopgrvd0 |
|- ( ( B = D /\ ph ) -> ( ( VtxDeg ` G ) ` C ) = 0 ) |
| 27 |
26
|
ex |
|- ( B = D -> ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) ) |
| 28 |
|
necom |
|- ( B =/= C <-> C =/= B ) |
| 29 |
|
df-ne |
|- ( C =/= B <-> -. C = B ) |
| 30 |
28 29
|
sylbb |
|- ( B =/= C -> -. C = B ) |
| 31 |
5 30
|
syl |
|- ( ph -> -. C = B ) |
| 32 |
7
|
neneqd |
|- ( ph -> -. C = D ) |
| 33 |
31 32
|
jca |
|- ( ph -> ( -. C = B /\ -. C = D ) ) |
| 34 |
33
|
adantl |
|- ( ( B =/= D /\ ph ) -> ( -. C = B /\ -. C = D ) ) |
| 35 |
|
ioran |
|- ( -. ( C = B \/ C = D ) <-> ( -. C = B /\ -. C = D ) ) |
| 36 |
34 35
|
sylibr |
|- ( ( B =/= D /\ ph ) -> -. ( C = B \/ C = D ) ) |
| 37 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 38 |
8
|
rneqd |
|- ( ph -> ran ( iEdg ` G ) = ran { <. A , { B , D } >. } ) |
| 39 |
|
rnsnopg |
|- ( A e. X -> ran { <. A , { B , D } >. } = { { B , D } } ) |
| 40 |
2 39
|
syl |
|- ( ph -> ran { <. A , { B , D } >. } = { { B , D } } ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ran ( iEdg ` G ) = { { B , D } } ) |
| 42 |
37 41
|
eqtrid |
|- ( ph -> ( Edg ` G ) = { { B , D } } ) |
| 43 |
42
|
adantl |
|- ( ( B =/= D /\ ph ) -> ( Edg ` G ) = { { B , D } } ) |
| 44 |
43
|
rexeqdv |
|- ( ( B =/= D /\ ph ) -> ( E. e e. ( Edg ` G ) C e. e <-> E. e e. { { B , D } } C e. e ) ) |
| 45 |
|
prex |
|- { B , D } e. _V |
| 46 |
|
eleq2 |
|- ( e = { B , D } -> ( C e. e <-> C e. { B , D } ) ) |
| 47 |
46
|
rexsng |
|- ( { B , D } e. _V -> ( E. e e. { { B , D } } C e. e <-> C e. { B , D } ) ) |
| 48 |
45 47
|
mp1i |
|- ( ( B =/= D /\ ph ) -> ( E. e e. { { B , D } } C e. e <-> C e. { B , D } ) ) |
| 49 |
|
elprg |
|- ( C e. V -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
| 50 |
4 49
|
syl |
|- ( ph -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
| 51 |
50
|
adantl |
|- ( ( B =/= D /\ ph ) -> ( C e. { B , D } <-> ( C = B \/ C = D ) ) ) |
| 52 |
44 48 51
|
3bitrd |
|- ( ( B =/= D /\ ph ) -> ( E. e e. ( Edg ` G ) C e. e <-> ( C = B \/ C = D ) ) ) |
| 53 |
36 52
|
mtbird |
|- ( ( B =/= D /\ ph ) -> -. E. e e. ( Edg ` G ) C e. e ) |
| 54 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 55 |
2
|
adantl |
|- ( ( B =/= D /\ ph ) -> A e. X ) |
| 56 |
3 1
|
eleqtrrd |
|- ( ph -> B e. ( Vtx ` G ) ) |
| 57 |
56
|
adantl |
|- ( ( B =/= D /\ ph ) -> B e. ( Vtx ` G ) ) |
| 58 |
6 1
|
eleqtrrd |
|- ( ph -> D e. ( Vtx ` G ) ) |
| 59 |
58
|
adantl |
|- ( ( B =/= D /\ ph ) -> D e. ( Vtx ` G ) ) |
| 60 |
8
|
adantl |
|- ( ( B =/= D /\ ph ) -> ( iEdg ` G ) = { <. A , { B , D } >. } ) |
| 61 |
|
simpl |
|- ( ( B =/= D /\ ph ) -> B =/= D ) |
| 62 |
54 55 57 59 60 61
|
usgr1e |
|- ( ( B =/= D /\ ph ) -> G e. USGraph ) |
| 63 |
4 1
|
eleqtrrd |
|- ( ph -> C e. ( Vtx ` G ) ) |
| 64 |
63
|
adantl |
|- ( ( B =/= D /\ ph ) -> C e. ( Vtx ` G ) ) |
| 65 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 66 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
| 67 |
54 65 66
|
vtxdusgr0edgnel |
|- ( ( G e. USGraph /\ C e. ( Vtx ` G ) ) -> ( ( ( VtxDeg ` G ) ` C ) = 0 <-> -. E. e e. ( Edg ` G ) C e. e ) ) |
| 68 |
62 64 67
|
syl2anc |
|- ( ( B =/= D /\ ph ) -> ( ( ( VtxDeg ` G ) ` C ) = 0 <-> -. E. e e. ( Edg ` G ) C e. e ) ) |
| 69 |
53 68
|
mpbird |
|- ( ( B =/= D /\ ph ) -> ( ( VtxDeg ` G ) ` C ) = 0 ) |
| 70 |
69
|
ex |
|- ( B =/= D -> ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) ) |
| 71 |
27 70
|
pm2.61ine |
|- ( ph -> ( ( VtxDeg ` G ) ` C ) = 0 ) |