Description: A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) | |
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) | ||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) | ||
| Assertion | vtxdusgr0edgnel | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) | |
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) | |
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) | |
| 4 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) | |
| 5 | 1 2 3 | vtxduhgr0edgnel | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) | 
| 6 | 4 5 | sylan | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |