Database GRAPH THEORY Undirected graphs Vertex degree vtxdusgr0edgnel  
				
		 
		
			
		 
		Description:   A vertex in a simple graph has degree 0 iff there is no edge incident
       with this vertex.  (Contributed by AV , 17-Dec-2020)   (Proof shortened by AV , 24-Dec-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtxdushgrfvedg.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					
						vtxdushgrfvedg.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
					
						vtxdushgrfvedg.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
				
					Assertion 
					vtxdusgr0edgnel ⊢   ( ( 𝐺   ∈  USGraph  ∧  𝑈   ∈  𝑉  )  →  ( ( 𝐷  ‘ 𝑈  )  =  0  ↔  ¬  ∃ 𝑒   ∈  𝐸  𝑈   ∈  𝑒  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtxdushgrfvedg.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						
							2 
								
							 
							vtxdushgrfvedg.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
						
							3 
								
							 
							vtxdushgrfvedg.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
						
							4 
								
							 
							usgruhgr ⊢  ( 𝐺   ∈  USGraph  →  𝐺   ∈  UHGraph )  
						
							5 
								1  2  3 
							 
							vtxduhgr0edgnel ⊢  ( ( 𝐺   ∈  UHGraph  ∧  𝑈   ∈  𝑉  )  →  ( ( 𝐷  ‘ 𝑈  )  =  0  ↔  ¬  ∃ 𝑒   ∈  𝐸  𝑈   ∈  𝑒  ) )  
						
							6 
								4  5 
							 
							sylan ⊢  ( ( 𝐺   ∈  USGraph  ∧  𝑈   ∈  𝑉  )  →  ( ( 𝐷  ‘ 𝑈  )  =  0  ↔  ¬  ∃ 𝑒   ∈  𝐸  𝑈   ∈  𝑒  ) )