| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdushgrfvedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdushgrfvedg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 1 4 3 | vtxd0nedgb | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 7 | 4 2 | uhgrvtxedgiedgb | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  ↔  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) | 
						
							| 9 | 6 8 | bitrd | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) |