Metamath Proof Explorer


Theorem vtxduhgr0edgnel

Description: A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v V=VtxG
vtxdushgrfvedg.e E=EdgG
vtxdushgrfvedg.d D=VtxDegG
Assertion vtxduhgr0edgnel GUHGraphUVDU=0¬eEUe

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V=VtxG
2 vtxdushgrfvedg.e E=EdgG
3 vtxdushgrfvedg.d D=VtxDegG
4 eqid iEdgG=iEdgG
5 1 4 3 vtxd0nedgb UVDU=0¬idomiEdgGUiEdgGi
6 5 adantl GUHGraphUVDU=0¬idomiEdgGUiEdgGi
7 4 2 uhgrvtxedgiedgb GUHGraphUVidomiEdgGUiEdgGieEUe
8 7 notbid GUHGraphUV¬idomiEdgGUiEdgGi¬eEUe
9 6 8 bitrd GUHGraphUVDU=0¬eEUe