Metamath Proof Explorer


Theorem vtxd0nedgb

Description: A vertex has degree 0 iff there is no edge incident with the vertex. (Contributed by AV, 24-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxd0nedgb.v V=VtxG
vtxd0nedgb.i I=iEdgG
vtxd0nedgb.d D=VtxDegG
Assertion vtxd0nedgb UVDU=0¬idomIUIi

Proof

Step Hyp Ref Expression
1 vtxd0nedgb.v V=VtxG
2 vtxd0nedgb.i I=iEdgG
3 vtxd0nedgb.d D=VtxDegG
4 3 fveq1i DU=VtxDegGU
5 eqid domI=domI
6 1 2 5 vtxdgval UVVtxDegGU=idomI|UIi+𝑒idomI|Ii=U
7 4 6 eqtrid UVDU=idomI|UIi+𝑒idomI|Ii=U
8 7 eqeq1d UVDU=0idomI|UIi+𝑒idomI|Ii=U=0
9 2 fvexi IV
10 9 dmex domIV
11 10 rabex idomI|UIiV
12 hashxnn0 idomI|UIiVidomI|UIi0*
13 11 12 ax-mp idomI|UIi0*
14 10 rabex idomI|Ii=UV
15 hashxnn0 idomI|Ii=UVidomI|Ii=U0*
16 14 15 ax-mp idomI|Ii=U0*
17 13 16 pm3.2i idomI|UIi0*idomI|Ii=U0*
18 xnn0xadd0 idomI|UIi0*idomI|Ii=U0*idomI|UIi+𝑒idomI|Ii=U=0idomI|UIi=0idomI|Ii=U=0
19 17 18 mp1i UVidomI|UIi+𝑒idomI|Ii=U=0idomI|UIi=0idomI|Ii=U=0
20 hasheq0 idomI|UIiVidomI|UIi=0idomI|UIi=
21 11 20 ax-mp idomI|UIi=0idomI|UIi=
22 hasheq0 idomI|Ii=UVidomI|Ii=U=0idomI|Ii=U=
23 14 22 ax-mp idomI|Ii=U=0idomI|Ii=U=
24 21 23 anbi12i idomI|UIi=0idomI|Ii=U=0idomI|UIi=idomI|Ii=U=
25 rabeq0 idomI|UIi=idomI¬UIi
26 rabeq0 idomI|Ii=U=idomI¬Ii=U
27 25 26 anbi12i idomI|UIi=idomI|Ii=U=idomI¬UIiidomI¬Ii=U
28 ralnex idomI¬UIiIi=U¬idomIUIiIi=U
29 28 bicomi ¬idomIUIiIi=UidomI¬UIiIi=U
30 ioran ¬UIiIi=U¬UIi¬Ii=U
31 30 ralbii idomI¬UIiIi=UidomI¬UIi¬Ii=U
32 r19.26 idomI¬UIi¬Ii=UidomI¬UIiidomI¬Ii=U
33 29 31 32 3bitri ¬idomIUIiIi=UidomI¬UIiidomI¬Ii=U
34 33 bicomi idomI¬UIiidomI¬Ii=U¬idomIUIiIi=U
35 24 27 34 3bitri idomI|UIi=0idomI|Ii=U=0¬idomIUIiIi=U
36 orcom UIiIi=UIi=UUIi
37 snidg UVUU
38 eleq2 Ii=UUIiUU
39 37 38 syl5ibrcom UVIi=UUIi
40 pm4.72 Ii=UUIiUIiIi=UUIi
41 39 40 sylib UVUIiIi=UUIi
42 36 41 bitr4id UVUIiIi=UUIi
43 42 rexbidv UVidomIUIiIi=UidomIUIi
44 43 notbid UV¬idomIUIiIi=U¬idomIUIi
45 35 44 bitrid UVidomI|UIi=0idomI|Ii=U=0¬idomIUIi
46 8 19 45 3bitrd UVDU=0¬idomIUIi