| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdushgrfvedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdushgrfvedg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | vtxdusgrfvedg | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑈 )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } )  =  0 ) ) | 
						
							| 6 |  | fvex | ⊢ ( Edg ‘ 𝐺 )  ∈  V | 
						
							| 7 | 2 6 | eqeltri | ⊢ 𝐸  ∈  V | 
						
							| 8 | 7 | rabex | ⊢ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  ∈  V | 
						
							| 9 |  | hasheq0 | ⊢ ( { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  ∈  V  →  ( ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } )  =  0  ↔  { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  =  ∅ ) ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } )  =  0  ↔  { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  =  ∅ ) ) | 
						
							| 11 |  | rabeq0 | ⊢ ( { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  =  ∅  ↔  ∀ 𝑒  ∈  𝐸 ¬  𝑈  ∈  𝑒 ) | 
						
							| 12 |  | ralnex | ⊢ ( ∀ 𝑒  ∈  𝐸 ¬  𝑈  ∈  𝑒  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∀ 𝑒  ∈  𝐸 ¬  𝑈  ∈  𝑒  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) | 
						
							| 14 | 11 13 | bitrid | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 }  =  ∅  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) | 
						
							| 15 | 5 10 14 | 3bitrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑒  ∈  𝐸 𝑈  ∈  𝑒 ) ) |