Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdushgrfvedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxdushgrfvedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
vtxdushgrfvedg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
6 |
1 4 5 3
|
vtxdusgrval |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) ) |
7 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
8 |
|
uspgrushgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) |
9 |
7 8
|
syl |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USHGraph ) |
10 |
1 2
|
vtxdushgrfvedglem |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
12 |
6 11
|
eqtrd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |