| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdushgrfvedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdushgrfvedg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 6 | 1 4 5 3 | vtxdusgrval | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑈 )  =  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) ) | 
						
							| 7 |  | usgruspgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 8 |  | uspgrushgr | ⊢ ( 𝐺  ∈  USPGraph  →  𝐺  ∈  USHGraph ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USHGraph ) | 
						
							| 10 | 1 2 | vtxdushgrfvedglem | ⊢ ( ( 𝐺  ∈  USHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } ) ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( ♯ ‘ { 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } ) ) | 
						
							| 12 | 6 11 | eqtrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑈  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑈 )  =  ( ♯ ‘ { 𝑒  ∈  𝐸  ∣  𝑈  ∈  𝑒 } ) ) |