| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdushgrfvedg.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | vtxdushgrfvedg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 4 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 5 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 6 | 1 4 5 3 | vtxdusgrval |  |-  ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) ) | 
						
							| 7 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 8 |  | uspgrushgr |  |-  ( G e. USPGraph -> G e. USHGraph ) | 
						
							| 9 | 7 8 | syl |  |-  ( G e. USGraph -> G e. USHGraph ) | 
						
							| 10 | 1 2 | vtxdushgrfvedglem |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( G e. USGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) | 
						
							| 12 | 6 11 | eqtrd |  |-  ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { e e. E | U e. e } ) ) |