Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdushgrfvedg.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdushgrfvedg.e |
|- E = ( Edg ` G ) |
3 |
|
vtxdushgrfvedg.d |
|- D = ( VtxDeg ` G ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
6 |
1 4 5 3
|
vtxdusgrval |
|- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) ) |
7 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
8 |
|
uspgrushgr |
|- ( G e. USPGraph -> G e. USHGraph ) |
9 |
7 8
|
syl |
|- ( G e. USGraph -> G e. USHGraph ) |
10 |
1 2
|
vtxdushgrfvedglem |
|- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
11 |
9 10
|
sylan |
|- ( ( G e. USGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
12 |
6 11
|
eqtrd |
|- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { e e. E | U e. e } ) ) |