Description: The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| vtxdlfgrval.i | |- I = ( iEdg ` G ) |
||
| vtxdlfgrval.a | |- A = dom I |
||
| vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdusgrval | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdlfgrval.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdlfgrval.a | |- A = dom I |
|
| 4 | vtxdlfgrval.d | |- D = ( VtxDeg ` G ) |
|
| 5 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 6 | 1 2 3 4 | vtxdumgrval | |- ( ( G e. UMGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
| 7 | 5 6 | sylan | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |