Metamath Proof Explorer


Theorem vtxdusgrval

Description: The value of the vertex degree function for a simple graph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses vtxdlfgrval.v
|- V = ( Vtx ` G )
vtxdlfgrval.i
|- I = ( iEdg ` G )
vtxdlfgrval.a
|- A = dom I
vtxdlfgrval.d
|- D = ( VtxDeg ` G )
Assertion vtxdusgrval
|- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) )

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v
 |-  V = ( Vtx ` G )
2 vtxdlfgrval.i
 |-  I = ( iEdg ` G )
3 vtxdlfgrval.a
 |-  A = dom I
4 vtxdlfgrval.d
 |-  D = ( VtxDeg ` G )
5 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
6 1 2 3 4 vtxdumgrval
 |-  ( ( G e. UMGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) )
7 5 6 sylan
 |-  ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) )