| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdushgrfvedg.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | vtxdushgrfvedg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 4 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 5 | 1 4 3 | vtxd0nedgb |  |-  ( U e. V -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 7 | 2 | eleq2i |  |-  ( { U , v } e. E <-> { U , v } e. ( Edg ` G ) ) | 
						
							| 8 | 4 | uhgredgiedgb |  |-  ( G e. UHGraph -> ( { U , v } e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 9 | 7 8 | bitrid |  |-  ( G e. UHGraph -> ( { U , v } e. E <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } e. E <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 11 |  | prid1g |  |-  ( U e. V -> U e. { U , v } ) | 
						
							| 12 |  | eleq2 |  |-  ( { U , v } = ( ( iEdg ` G ) ` i ) -> ( U e. { U , v } <-> U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 13 | 11 12 | syl5ibcom |  |-  ( U e. V -> ( { U , v } = ( ( iEdg ` G ) ` i ) -> U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } = ( ( iEdg ` G ) ` i ) -> U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 15 | 14 | reximdv |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 16 | 10 15 | sylbid |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } e. E -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 17 | 16 | rexlimdvw |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( E. v e. V { U , v } e. E -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 18 | 17 | con3d |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) -> -. E. v e. V { U , v } e. E ) ) | 
						
							| 19 | 6 18 | sylbid |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 -> -. E. v e. V { U , v } e. E ) ) | 
						
							| 20 | 19 | 3impia |  |-  ( ( G e. UHGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |