| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdushgrfvedg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdushgrfvedg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 1 4 3 | vtxd0nedgb | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 7 | 2 | eleq2i | ⊢ ( { 𝑈 ,  𝑣 }  ∈  𝐸  ↔  { 𝑈 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 8 | 4 | uhgredgiedgb | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝑈 ,  𝑣 }  ∈  ( Edg ‘ 𝐺 )  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 9 | 7 8 | bitrid | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝑈 ,  𝑣 }  ∈  𝐸  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( { 𝑈 ,  𝑣 }  ∈  𝐸  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 11 |  | prid1g | ⊢ ( 𝑈  ∈  𝑉  →  𝑈  ∈  { 𝑈 ,  𝑣 } ) | 
						
							| 12 |  | eleq2 | ⊢ ( { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  →  ( 𝑈  ∈  { 𝑈 ,  𝑣 }  ↔  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 13 | 11 12 | syl5ibcom | ⊢ ( 𝑈  ∈  𝑉  →  ( { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  →  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  →  𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | reximdv | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) { 𝑈 ,  𝑣 }  =  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  →  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 16 | 10 15 | sylbid | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( { 𝑈 ,  𝑣 }  ∈  𝐸  →  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 17 | 16 | rexlimdvw | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ∃ 𝑣  ∈  𝑉 { 𝑈 ,  𝑣 }  ∈  𝐸  →  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | 
						
							| 18 | 17 | con3d | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ¬  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) 𝑈  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  →  ¬  ∃ 𝑣  ∈  𝑉 { 𝑈 ,  𝑣 }  ∈  𝐸 ) ) | 
						
							| 19 | 6 18 | sylbid | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑈 )  =  0  →  ¬  ∃ 𝑣  ∈  𝑉 { 𝑈 ,  𝑣 }  ∈  𝐸 ) ) | 
						
							| 20 | 19 | 3impia | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  𝑈  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑈 )  =  0 )  →  ¬  ∃ 𝑣  ∈  𝑉 { 𝑈 ,  𝑣 }  ∈  𝐸 ) |