Database GRAPH THEORY Undirected graphs Vertex degree vtxdumgr0nedg  
				
		 
		
			
		 
		Description:   If a vertex in a multigraph has degree 0, the vertex is not adjacent to
       another vertex via an edge.  (Contributed by Alexander van der Vekens , 8-Dec-2017)   (Revised by AV , 12-Dec-2020)   (Proof shortened by AV , 15-Dec-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						vtxdushgrfvedg.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					
						vtxdushgrfvedg.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
					
						vtxdushgrfvedg.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
				
					Assertion 
					vtxdumgr0nedg ⊢   ( ( 𝐺   ∈  UMGraph  ∧  𝑈   ∈  𝑉   ∧  ( 𝐷  ‘ 𝑈  )  =  0 )  →  ¬  ∃ 𝑣   ∈  𝑉  { 𝑈  ,  𝑣  }  ∈  𝐸  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							vtxdushgrfvedg.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						
							2 
								
							 
							vtxdushgrfvedg.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
						
							3 
								
							 
							vtxdushgrfvedg.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
						
							4 
								
							 
							umgruhgr ⊢  ( 𝐺   ∈  UMGraph  →  𝐺   ∈  UHGraph )  
						
							5 
								1  2  3 
							 
							vtxduhgr0nedg ⊢  ( ( 𝐺   ∈  UHGraph  ∧  𝑈   ∈  𝑉   ∧  ( 𝐷  ‘ 𝑈  )  =  0 )  →  ¬  ∃ 𝑣   ∈  𝑉  { 𝑈  ,  𝑣  }  ∈  𝐸  )  
						
							6 
								4  5 
							 
							syl3an1 ⊢  ( ( 𝐺   ∈  UMGraph  ∧  𝑈   ∈  𝑉   ∧  ( 𝐷  ‘ 𝑈  )  =  0 )  →  ¬  ∃ 𝑣   ∈  𝑉  { 𝑈  ,  𝑣  }  ∈  𝐸  )