| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdushgrfvedg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
vtxdushgrfvedg.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 4 |
3
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 5 |
4
|
rabex |
⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V |
| 6 |
5
|
a1i |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V ) |
| 7 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } = { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } |
| 9 |
|
eleq2w |
⊢ ( 𝑒 = 𝑐 → ( 𝑈 ∈ 𝑒 ↔ 𝑈 ∈ 𝑐 ) ) |
| 10 |
9
|
cbvrabv |
⊢ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = { 𝑐 ∈ 𝐸 ∣ 𝑈 ∈ 𝑐 } |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 12 |
2 7 1 8 10 11
|
ushgredgedg |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) : { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) |
| 13 |
6 12
|
hasheqf1od |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |