Metamath Proof Explorer


Theorem vtxdushgrfvedglem

Description: Lemma for vtxdushgrfvedg and vtxdusgrfvedg . (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses vtxdushgrfvedg.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdushgrfvedg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion vtxdushgrfvedglem ( ( 𝐺 ∈ USHGraph ∧ 𝑈𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) )

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdushgrfvedg.e 𝐸 = ( Edg ‘ 𝐺 )
3 fvex ( iEdg ‘ 𝐺 ) ∈ V
4 3 dmex dom ( iEdg ‘ 𝐺 ) ∈ V
5 4 rabex { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V
6 5 a1i ( ( 𝐺 ∈ USHGraph ∧ 𝑈𝑉 ) → { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ∈ V )
7 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
8 eqid { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } = { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) }
9 eleq2w ( 𝑒 = 𝑐 → ( 𝑈𝑒𝑈𝑐 ) )
10 9 cbvrabv { 𝑒𝐸𝑈𝑒 } = { 𝑐𝐸𝑈𝑐 }
11 eqid ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) )
12 2 7 1 8 10 11 ushgredgedg ( ( 𝐺 ∈ USHGraph ∧ 𝑈𝑉 ) → ( 𝑥 ∈ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ↦ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) : { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } –1-1-onto→ { 𝑒𝐸𝑈𝑒 } )
13 6 12 hasheqf1od ( ( 𝐺 ∈ USHGraph ∧ 𝑈𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒𝐸𝑈𝑒 } ) )