Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgfusgrf.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
fusgrfis |
⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) |
3 |
|
fusgrusgr |
⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
6 |
4 5
|
usgredgffibi |
⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
7 |
3 6
|
syl |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
8 |
|
usgrfun |
⊢ ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) ) |
9 |
|
fundmfibi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
11 |
7 10
|
bitrd |
⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
12 |
2 11
|
mpbid |
⊢ ( 𝐺 ∈ FinUSGraph → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
13 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
14 |
1 4 13
|
vtxdgfisf |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |
15 |
12 14
|
mpdan |
⊢ ( 𝐺 ∈ FinUSGraph → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |