Metamath Proof Explorer


Theorem vtxdgfusgrf

Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypothesis vtxdgfusgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion vtxdgfusgrf ( 𝐺 ∈ FinUSGraph → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 )

Proof

Step Hyp Ref Expression
1 vtxdgfusgrf.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fusgrfis ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin )
3 fusgrusgr ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph )
4 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
5 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
6 4 5 usgredgffibi ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) )
7 3 6 syl ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) )
8 usgrfun ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) )
9 fundmfibi ( Fun ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) )
10 3 8 9 3syl ( 𝐺 ∈ FinUSGraph → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) )
11 7 10 bitrd ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) )
12 2 11 mpbid ( 𝐺 ∈ FinUSGraph → dom ( iEdg ‘ 𝐺 ) ∈ Fin )
13 eqid dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 )
14 1 4 13 vtxdgfisf ( ( 𝐺 ∈ FinUSGraph ∧ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 )
15 12 14 mpdan ( 𝐺 ∈ FinUSGraph → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 )