| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgfusgrf.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgrfis | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( Edg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 3 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 4 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 4 5 | usgredgffibi | ⊢ ( 𝐺  ∈  USGraph  →  ( ( Edg ‘ 𝐺 )  ∈  Fin  ↔  ( iEdg ‘ 𝐺 )  ∈  Fin ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ( Edg ‘ 𝐺 )  ∈  Fin  ↔  ( iEdg ‘ 𝐺 )  ∈  Fin ) ) | 
						
							| 8 |  | usgrfun | ⊢ ( 𝐺  ∈  USGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 |  | fundmfibi | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( ( iEdg ‘ 𝐺 )  ∈  Fin  ↔  dom  ( iEdg ‘ 𝐺 )  ∈  Fin ) ) | 
						
							| 10 | 3 8 9 | 3syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ( iEdg ‘ 𝐺 )  ∈  Fin  ↔  dom  ( iEdg ‘ 𝐺 )  ∈  Fin ) ) | 
						
							| 11 | 7 10 | bitrd | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( ( Edg ‘ 𝐺 )  ∈  Fin  ↔  dom  ( iEdg ‘ 𝐺 )  ∈  Fin ) ) | 
						
							| 12 | 2 11 | mpbid | ⊢ ( 𝐺  ∈  FinUSGraph  →  dom  ( iEdg ‘ 𝐺 )  ∈  Fin ) | 
						
							| 13 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 14 | 1 4 13 | vtxdgfisf | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  dom  ( iEdg ‘ 𝐺 )  ∈  Fin )  →  ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) | 
						
							| 15 | 12 14 | mpdan | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |