| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgfusgrf.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgrfis |  |-  ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) | 
						
							| 3 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 4 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 5 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 6 | 4 5 | usgredgffibi |  |-  ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) | 
						
							| 8 |  | usgrfun |  |-  ( G e. USGraph -> Fun ( iEdg ` G ) ) | 
						
							| 9 |  | fundmfibi |  |-  ( Fun ( iEdg ` G ) -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) | 
						
							| 10 | 3 8 9 | 3syl |  |-  ( G e. FinUSGraph -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) | 
						
							| 11 | 7 10 | bitrd |  |-  ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) | 
						
							| 12 | 2 11 | mpbid |  |-  ( G e. FinUSGraph -> dom ( iEdg ` G ) e. Fin ) | 
						
							| 13 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 14 | 1 4 13 | vtxdgfisf |  |-  ( ( G e. FinUSGraph /\ dom ( iEdg ` G ) e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) | 
						
							| 15 | 12 14 | mpdan |  |-  ( G e. FinUSGraph -> ( VtxDeg ` G ) : V --> NN0 ) |