| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgf.v |
|- V = ( Vtx ` G ) |
| 2 |
|
vtxdg0e.i |
|- I = ( iEdg ` G ) |
| 3 |
|
vtxdgfisnn0.a |
|- A = dom I |
| 4 |
1
|
vtxdgf |
|- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |
| 5 |
4
|
adantr |
|- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) : V --> NN0* ) |
| 6 |
5
|
ffnd |
|- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) Fn V ) |
| 7 |
1 2 3
|
vtxdgfisnn0 |
|- ( ( A e. Fin /\ u e. V ) -> ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 8 |
7
|
adantll |
|- ( ( ( G e. W /\ A e. Fin ) /\ u e. V ) -> ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 9 |
8
|
ralrimiva |
|- ( ( G e. W /\ A e. Fin ) -> A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 10 |
|
ffnfv |
|- ( ( VtxDeg ` G ) : V --> NN0 <-> ( ( VtxDeg ` G ) Fn V /\ A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 ) ) |
| 11 |
6 9 10
|
sylanbrc |
|- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) |