| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgf.v |
|- V = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 3 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
| 4 |
1 2 3
|
vtxdgfval |
|- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 5 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } = { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } |
| 6 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 7 |
|
dmexg |
|- ( ( iEdg ` G ) e. _V -> dom ( iEdg ` G ) e. _V ) |
| 8 |
6 7
|
mp1i |
|- ( ( G e. W /\ u e. V ) -> dom ( iEdg ` G ) e. _V ) |
| 9 |
5 8
|
rabexd |
|- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V ) |
| 10 |
|
hashxnn0 |
|- ( { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
| 11 |
9 10
|
syl |
|- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
| 12 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } |
| 13 |
12 8
|
rabexd |
|- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V ) |
| 14 |
|
hashxnn0 |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
| 15 |
13 14
|
syl |
|- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
| 16 |
|
xnn0xaddcl |
|- ( ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* /\ ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
| 17 |
11 15 16
|
syl2anc |
|- ( ( G e. W /\ u e. V ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
| 18 |
4 17
|
fmpt3d |
|- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |