Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgf.v |
|- V = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
4 |
1 2 3
|
vtxdgfval |
|- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
5 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } = { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } |
6 |
|
fvex |
|- ( iEdg ` G ) e. _V |
7 |
|
dmexg |
|- ( ( iEdg ` G ) e. _V -> dom ( iEdg ` G ) e. _V ) |
8 |
6 7
|
mp1i |
|- ( ( G e. W /\ u e. V ) -> dom ( iEdg ` G ) e. _V ) |
9 |
5 8
|
rabexd |
|- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V ) |
10 |
|
hashxnn0 |
|- ( { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
11 |
9 10
|
syl |
|- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
12 |
|
eqid |
|- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } |
13 |
12 8
|
rabexd |
|- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V ) |
14 |
|
hashxnn0 |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
15 |
13 14
|
syl |
|- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
16 |
|
xnn0xaddcl |
|- ( ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* /\ ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
17 |
11 15 16
|
syl2anc |
|- ( ( G e. W /\ u e. V ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
18 |
4 17
|
fmpt3d |
|- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |