| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0addcl |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. NN0 ) |
| 2 |
1
|
nn0xnn0d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A + B ) e. NN0* ) |
| 3 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 4 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 5 |
|
rexadd |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| 6 |
5
|
eleq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A +e B ) e. NN0* <-> ( A + B ) e. NN0* ) ) |
| 7 |
3 4 6
|
syl2an |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A +e B ) e. NN0* <-> ( A + B ) e. NN0* ) ) |
| 8 |
2 7
|
mpbird |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A +e B ) e. NN0* ) |
| 9 |
8
|
a1d |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) |
| 10 |
|
ianor |
|- ( -. ( A e. NN0 /\ B e. NN0 ) <-> ( -. A e. NN0 \/ -. B e. NN0 ) ) |
| 11 |
|
xnn0nnn0pnf |
|- ( ( A e. NN0* /\ -. A e. NN0 ) -> A = +oo ) |
| 12 |
|
oveq1 |
|- ( A = +oo -> ( A +e B ) = ( +oo +e B ) ) |
| 13 |
|
xnn0xrnemnf |
|- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
| 14 |
|
xaddpnf2 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
| 15 |
13 14
|
syl |
|- ( B e. NN0* -> ( +oo +e B ) = +oo ) |
| 16 |
12 15
|
sylan9eq |
|- ( ( A = +oo /\ B e. NN0* ) -> ( A +e B ) = +oo ) |
| 17 |
16
|
ex |
|- ( A = +oo -> ( B e. NN0* -> ( A +e B ) = +oo ) ) |
| 18 |
11 17
|
syl |
|- ( ( A e. NN0* /\ -. A e. NN0 ) -> ( B e. NN0* -> ( A +e B ) = +oo ) ) |
| 19 |
18
|
expcom |
|- ( -. A e. NN0 -> ( A e. NN0* -> ( B e. NN0* -> ( A +e B ) = +oo ) ) ) |
| 20 |
19
|
impd |
|- ( -. A e. NN0 -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) |
| 21 |
|
xnn0nnn0pnf |
|- ( ( B e. NN0* /\ -. B e. NN0 ) -> B = +oo ) |
| 22 |
|
oveq2 |
|- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
| 23 |
|
xnn0xrnemnf |
|- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
| 24 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 25 |
23 24
|
syl |
|- ( A e. NN0* -> ( A +e +oo ) = +oo ) |
| 26 |
22 25
|
sylan9eq |
|- ( ( B = +oo /\ A e. NN0* ) -> ( A +e B ) = +oo ) |
| 27 |
26
|
ex |
|- ( B = +oo -> ( A e. NN0* -> ( A +e B ) = +oo ) ) |
| 28 |
21 27
|
syl |
|- ( ( B e. NN0* /\ -. B e. NN0 ) -> ( A e. NN0* -> ( A +e B ) = +oo ) ) |
| 29 |
28
|
expcom |
|- ( -. B e. NN0 -> ( B e. NN0* -> ( A e. NN0* -> ( A +e B ) = +oo ) ) ) |
| 30 |
29
|
impcomd |
|- ( -. B e. NN0 -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) |
| 31 |
20 30
|
jaoi |
|- ( ( -. A e. NN0 \/ -. B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) = +oo ) ) |
| 32 |
31
|
imp |
|- ( ( ( -. A e. NN0 \/ -. B e. NN0 ) /\ ( A e. NN0* /\ B e. NN0* ) ) -> ( A +e B ) = +oo ) |
| 33 |
|
pnf0xnn0 |
|- +oo e. NN0* |
| 34 |
32 33
|
eqeltrdi |
|- ( ( ( -. A e. NN0 \/ -. B e. NN0 ) /\ ( A e. NN0* /\ B e. NN0* ) ) -> ( A +e B ) e. NN0* ) |
| 35 |
34
|
ex |
|- ( ( -. A e. NN0 \/ -. B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) |
| 36 |
10 35
|
sylbi |
|- ( -. ( A e. NN0 /\ B e. NN0 ) -> ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) ) |
| 37 |
9 36
|
pm2.61i |
|- ( ( A e. NN0* /\ B e. NN0* ) -> ( A +e B ) e. NN0* ) |