| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0addcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℕ0 ) |
| 2 |
1
|
nn0xnn0d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℕ0* ) |
| 3 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 4 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
| 5 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ↔ ( 𝐴 + 𝐵 ) ∈ ℕ0* ) ) |
| 7 |
3 4 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ↔ ( 𝐴 + 𝐵 ) ∈ ℕ0* ) ) |
| 8 |
2 7
|
mpbird |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |
| 9 |
8
|
a1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 10 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ↔ ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ) |
| 11 |
|
xnn0nnn0pnf |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0 ) → 𝐴 = +∞ ) |
| 12 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) |
| 13 |
|
xnn0xrnemnf |
⊢ ( 𝐵 ∈ ℕ0* → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) |
| 14 |
|
xaddpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 15 |
13 14
|
syl |
⊢ ( 𝐵 ∈ ℕ0* → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 16 |
12 15
|
sylan9eq |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 17 |
16
|
ex |
⊢ ( 𝐴 = +∞ → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 18 |
11 17
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0 ) → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 19 |
18
|
expcom |
⊢ ( ¬ 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0* → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) ) |
| 20 |
19
|
impd |
⊢ ( ¬ 𝐴 ∈ ℕ0 → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 21 |
|
xnn0nnn0pnf |
⊢ ( ( 𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0 ) → 𝐵 = +∞ ) |
| 22 |
|
oveq2 |
⊢ ( 𝐵 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 +𝑒 +∞ ) ) |
| 23 |
|
xnn0xrnemnf |
⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 24 |
|
xaddpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 25 |
23 24
|
syl |
⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 26 |
22 25
|
sylan9eq |
⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 27 |
26
|
ex |
⊢ ( 𝐵 = +∞ → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 28 |
21 27
|
syl |
⊢ ( ( 𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 29 |
28
|
expcom |
⊢ ( ¬ 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℕ0* → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) ) |
| 30 |
29
|
impcomd |
⊢ ( ¬ 𝐵 ∈ ℕ0 → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 31 |
20 30
|
jaoi |
⊢ ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 33 |
|
pnf0xnn0 |
⊢ +∞ ∈ ℕ0* |
| 34 |
32 33
|
eqeltrdi |
⊢ ( ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |
| 35 |
34
|
ex |
⊢ ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 36 |
10 35
|
sylbi |
⊢ ( ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 37 |
9 36
|
pm2.61i |
⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |