Metamath Proof Explorer


Theorem vtxdgfisf

Description: The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses vtxdgf.v V=VtxG
vtxdg0e.i I=iEdgG
vtxdgfisnn0.a A=domI
Assertion vtxdgfisf GWAFinVtxDegG:V0

Proof

Step Hyp Ref Expression
1 vtxdgf.v V=VtxG
2 vtxdg0e.i I=iEdgG
3 vtxdgfisnn0.a A=domI
4 1 vtxdgf GWVtxDegG:V0*
5 4 adantr GWAFinVtxDegG:V0*
6 5 ffnd GWAFinVtxDegGFnV
7 1 2 3 vtxdgfisnn0 AFinuVVtxDegGu0
8 7 adantll GWAFinuVVtxDegGu0
9 8 ralrimiva GWAFinuVVtxDegGu0
10 ffnfv VtxDegG:V0VtxDegGFnVuVVtxDegGu0
11 6 9 10 sylanbrc GWAFinVtxDegG:V0