Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vtxdeqd.g | |
|
vtxdeqd.h | |
||
vtxdeqd.v | |
||
vtxdeqd.i | |
||
Assertion | vtxdeqd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdeqd.g | |
|
2 | vtxdeqd.h | |
|
3 | vtxdeqd.v | |
|
4 | vtxdeqd.i | |
|
5 | 4 | dmeqd | |
6 | 4 | fveq1d | |
7 | 6 | eleq2d | |
8 | 5 7 | rabeqbidv | |
9 | 8 | fveq2d | |
10 | 6 | eqeq1d | |
11 | 5 10 | rabeqbidv | |
12 | 11 | fveq2d | |
13 | 9 12 | oveq12d | |
14 | 3 13 | mpteq12dv | |
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 15 16 17 | vtxdgfval | |
19 | 2 18 | syl | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 20 21 22 | vtxdgfval | |
24 | 1 23 | syl | |
25 | 14 19 24 | 3eqtr4d | |