Metamath Proof Explorer


Theorem vtxdeqd

Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021)

Ref Expression
Hypotheses vtxdeqd.g φGX
vtxdeqd.h φHY
vtxdeqd.v φVtxH=VtxG
vtxdeqd.i φiEdgH=iEdgG
Assertion vtxdeqd φVtxDegH=VtxDegG

Proof

Step Hyp Ref Expression
1 vtxdeqd.g φGX
2 vtxdeqd.h φHY
3 vtxdeqd.v φVtxH=VtxG
4 vtxdeqd.i φiEdgH=iEdgG
5 4 dmeqd φdomiEdgH=domiEdgG
6 4 fveq1d φiEdgHx=iEdgGx
7 6 eleq2d φuiEdgHxuiEdgGx
8 5 7 rabeqbidv φxdomiEdgH|uiEdgHx=xdomiEdgG|uiEdgGx
9 8 fveq2d φxdomiEdgH|uiEdgHx=xdomiEdgG|uiEdgGx
10 6 eqeq1d φiEdgHx=uiEdgGx=u
11 5 10 rabeqbidv φxdomiEdgH|iEdgHx=u=xdomiEdgG|iEdgGx=u
12 11 fveq2d φxdomiEdgH|iEdgHx=u=xdomiEdgG|iEdgGx=u
13 9 12 oveq12d φxdomiEdgH|uiEdgHx+𝑒xdomiEdgH|iEdgHx=u=xdomiEdgG|uiEdgGx+𝑒xdomiEdgG|iEdgGx=u
14 3 13 mpteq12dv φuVtxHxdomiEdgH|uiEdgHx+𝑒xdomiEdgH|iEdgHx=u=uVtxGxdomiEdgG|uiEdgGx+𝑒xdomiEdgG|iEdgGx=u
15 eqid VtxH=VtxH
16 eqid iEdgH=iEdgH
17 eqid domiEdgH=domiEdgH
18 15 16 17 vtxdgfval HYVtxDegH=uVtxHxdomiEdgH|uiEdgHx+𝑒xdomiEdgH|iEdgHx=u
19 2 18 syl φVtxDegH=uVtxHxdomiEdgH|uiEdgHx+𝑒xdomiEdgH|iEdgHx=u
20 eqid VtxG=VtxG
21 eqid iEdgG=iEdgG
22 eqid domiEdgG=domiEdgG
23 20 21 22 vtxdgfval GXVtxDegG=uVtxGxdomiEdgG|uiEdgGx+𝑒xdomiEdgG|iEdgGx=u
24 1 23 syl φVtxDegG=uVtxGxdomiEdgG|uiEdgGx+𝑒xdomiEdgG|iEdgGx=u
25 14 19 24 3eqtr4d φVtxDegH=VtxDegG