| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1egrvtxdg1.v | ⊢ ( 𝜑  →  ( Vtx ‘ 𝐺 )  =  𝑉 ) | 
						
							| 2 |  | 1egrvtxdg1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | 1egrvtxdg1.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | 1egrvtxdg1.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 5 |  | 1egrvtxdg1.n | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 6 |  | 1egrvtxdg0.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 7 |  | 1egrvtxdg0.n | ⊢ ( 𝜑  →  𝐶  ≠  𝐷 ) | 
						
							| 8 |  | 1egrvtxdg0.i | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 } ) | 
						
							| 9 | 1 | adantl | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  ( Vtx ‘ 𝐺 )  =  𝑉 ) | 
						
							| 10 | 2 | adantl | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  𝐴  ∈  𝑋 ) | 
						
							| 11 | 3 | adantl | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  𝐵  ∈  𝑉 ) | 
						
							| 12 | 8 | adantl | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 } ) | 
						
							| 13 |  | preq2 | ⊢ ( 𝐷  =  𝐵  →  { 𝐵 ,  𝐷 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 14 | 13 | eqcoms | ⊢ ( 𝐵  =  𝐷  →  { 𝐵 ,  𝐷 }  =  { 𝐵 ,  𝐵 } ) | 
						
							| 15 |  | dfsn2 | ⊢ { 𝐵 }  =  { 𝐵 ,  𝐵 } | 
						
							| 16 | 14 15 | eqtr4di | ⊢ ( 𝐵  =  𝐷  →  { 𝐵 ,  𝐷 }  =  { 𝐵 } ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  { 𝐵 ,  𝐷 }  =  { 𝐵 } ) | 
						
							| 18 | 17 | opeq2d | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉  =  〈 𝐴 ,  { 𝐵 } 〉 ) | 
						
							| 19 | 18 | sneqd | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 }  =  { 〈 𝐴 ,  { 𝐵 } 〉 } ) | 
						
							| 20 | 12 19 | eqtrd | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝐵 } 〉 } ) | 
						
							| 21 | 5 | necomd | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 22 | 4 21 | jca | ⊢ ( 𝜑  →  ( 𝐶  ∈  𝑉  ∧  𝐶  ≠  𝐵 ) ) | 
						
							| 23 |  | eldifsn | ⊢ ( 𝐶  ∈  ( 𝑉  ∖  { 𝐵 } )  ↔  ( 𝐶  ∈  𝑉  ∧  𝐶  ≠  𝐵 ) ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑉  ∖  { 𝐵 } ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  𝐶  ∈  ( 𝑉  ∖  { 𝐵 } ) ) | 
						
							| 26 | 9 10 11 20 25 | 1loopgrvd0 | ⊢ ( ( 𝐵  =  𝐷  ∧  𝜑 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0 ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝐵  =  𝐷  →  ( 𝜑  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0 ) ) | 
						
							| 28 |  | necom | ⊢ ( 𝐵  ≠  𝐶  ↔  𝐶  ≠  𝐵 ) | 
						
							| 29 |  | df-ne | ⊢ ( 𝐶  ≠  𝐵  ↔  ¬  𝐶  =  𝐵 ) | 
						
							| 30 | 28 29 | sylbb | ⊢ ( 𝐵  ≠  𝐶  →  ¬  𝐶  =  𝐵 ) | 
						
							| 31 | 5 30 | syl | ⊢ ( 𝜑  →  ¬  𝐶  =  𝐵 ) | 
						
							| 32 | 7 | neneqd | ⊢ ( 𝜑  →  ¬  𝐶  =  𝐷 ) | 
						
							| 33 | 31 32 | jca | ⊢ ( 𝜑  →  ( ¬  𝐶  =  𝐵  ∧  ¬  𝐶  =  𝐷 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ¬  𝐶  =  𝐵  ∧  ¬  𝐶  =  𝐷 ) ) | 
						
							| 35 |  | ioran | ⊢ ( ¬  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 )  ↔  ( ¬  𝐶  =  𝐵  ∧  ¬  𝐶  =  𝐷 ) ) | 
						
							| 36 | 34 35 | sylibr | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ¬  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 ) ) | 
						
							| 37 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 38 | 8 | rneqd | ⊢ ( 𝜑  →  ran  ( iEdg ‘ 𝐺 )  =  ran  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 } ) | 
						
							| 39 |  | rnsnopg | ⊢ ( 𝐴  ∈  𝑋  →  ran  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 }  =  { { 𝐵 ,  𝐷 } } ) | 
						
							| 40 | 2 39 | syl | ⊢ ( 𝜑  →  ran  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 }  =  { { 𝐵 ,  𝐷 } } ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( 𝜑  →  ran  ( iEdg ‘ 𝐺 )  =  { { 𝐵 ,  𝐷 } } ) | 
						
							| 42 | 37 41 | eqtrid | ⊢ ( 𝜑  →  ( Edg ‘ 𝐺 )  =  { { 𝐵 ,  𝐷 } } ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( Edg ‘ 𝐺 )  =  { { 𝐵 ,  𝐷 } } ) | 
						
							| 44 | 43 | rexeqdv | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ∃ 𝑒  ∈  ( Edg ‘ 𝐺 ) 𝐶  ∈  𝑒  ↔  ∃ 𝑒  ∈  { { 𝐵 ,  𝐷 } } 𝐶  ∈  𝑒 ) ) | 
						
							| 45 |  | prex | ⊢ { 𝐵 ,  𝐷 }  ∈  V | 
						
							| 46 |  | eleq2 | ⊢ ( 𝑒  =  { 𝐵 ,  𝐷 }  →  ( 𝐶  ∈  𝑒  ↔  𝐶  ∈  { 𝐵 ,  𝐷 } ) ) | 
						
							| 47 | 46 | rexsng | ⊢ ( { 𝐵 ,  𝐷 }  ∈  V  →  ( ∃ 𝑒  ∈  { { 𝐵 ,  𝐷 } } 𝐶  ∈  𝑒  ↔  𝐶  ∈  { 𝐵 ,  𝐷 } ) ) | 
						
							| 48 | 45 47 | mp1i | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ∃ 𝑒  ∈  { { 𝐵 ,  𝐷 } } 𝐶  ∈  𝑒  ↔  𝐶  ∈  { 𝐵 ,  𝐷 } ) ) | 
						
							| 49 |  | elprg | ⊢ ( 𝐶  ∈  𝑉  →  ( 𝐶  ∈  { 𝐵 ,  𝐷 }  ↔  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 ) ) ) | 
						
							| 50 | 4 49 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  { 𝐵 ,  𝐷 }  ↔  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( 𝐶  ∈  { 𝐵 ,  𝐷 }  ↔  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 ) ) ) | 
						
							| 52 | 44 48 51 | 3bitrd | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ∃ 𝑒  ∈  ( Edg ‘ 𝐺 ) 𝐶  ∈  𝑒  ↔  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐷 ) ) ) | 
						
							| 53 | 36 52 | mtbird | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ¬  ∃ 𝑒  ∈  ( Edg ‘ 𝐺 ) 𝐶  ∈  𝑒 ) | 
						
							| 54 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 55 | 2 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐴  ∈  𝑋 ) | 
						
							| 56 | 3 1 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 58 | 6 1 | eleqtrrd | ⊢ ( 𝜑  →  𝐷  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐷  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 60 | 8 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝐵 ,  𝐷 } 〉 } ) | 
						
							| 61 |  | simpl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐵  ≠  𝐷 ) | 
						
							| 62 | 54 55 57 59 60 61 | usgr1e | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐺  ∈  USGraph ) | 
						
							| 63 | 4 1 | eleqtrrd | ⊢ ( 𝜑  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 65 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 66 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 67 | 54 65 66 | vtxdusgr0edgnel | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0  ↔  ¬  ∃ 𝑒  ∈  ( Edg ‘ 𝐺 ) 𝐶  ∈  𝑒 ) ) | 
						
							| 68 | 62 64 67 | syl2anc | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0  ↔  ¬  ∃ 𝑒  ∈  ( Edg ‘ 𝐺 ) 𝐶  ∈  𝑒 ) ) | 
						
							| 69 | 53 68 | mpbird | ⊢ ( ( 𝐵  ≠  𝐷  ∧  𝜑 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0 ) | 
						
							| 70 | 69 | ex | ⊢ ( 𝐵  ≠  𝐷  →  ( 𝜑  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0 ) ) | 
						
							| 71 | 27 70 | pm2.61ine | ⊢ ( 𝜑  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 )  =  0 ) |