Step |
Hyp |
Ref |
Expression |
1 |
|
uspgr1e.v |
|- V = ( Vtx ` G ) |
2 |
|
uspgr1e.a |
|- ( ph -> A e. X ) |
3 |
|
uspgr1e.b |
|- ( ph -> B e. V ) |
4 |
|
uspgr1e.c |
|- ( ph -> C e. V ) |
5 |
|
uspgr1e.e |
|- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
6 |
|
usgr1e.e |
|- ( ph -> B =/= C ) |
7 |
1 2 3 4 5
|
uspgr1e |
|- ( ph -> G e. USPGraph ) |
8 |
|
hashprg |
|- ( ( B e. V /\ C e. V ) -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) |
9 |
3 4 8
|
syl2anc |
|- ( ph -> ( B =/= C <-> ( # ` { B , C } ) = 2 ) ) |
10 |
6 9
|
mpbid |
|- ( ph -> ( # ` { B , C } ) = 2 ) |
11 |
|
prex |
|- { B , C } e. _V |
12 |
|
fveqeq2 |
|- ( x = { B , C } -> ( ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) ) |
13 |
11 12
|
ralsn |
|- ( A. x e. { { B , C } } ( # ` x ) = 2 <-> ( # ` { B , C } ) = 2 ) |
14 |
10 13
|
sylibr |
|- ( ph -> A. x e. { { B , C } } ( # ` x ) = 2 ) |
15 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
16 |
15
|
a1i |
|- ( ph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
17 |
5
|
rneqd |
|- ( ph -> ran ( iEdg ` G ) = ran { <. A , { B , C } >. } ) |
18 |
|
rnsnopg |
|- ( A e. X -> ran { <. A , { B , C } >. } = { { B , C } } ) |
19 |
2 18
|
syl |
|- ( ph -> ran { <. A , { B , C } >. } = { { B , C } } ) |
20 |
16 17 19
|
3eqtrd |
|- ( ph -> ( Edg ` G ) = { { B , C } } ) |
21 |
20
|
raleqdv |
|- ( ph -> ( A. x e. ( Edg ` G ) ( # ` x ) = 2 <-> A. x e. { { B , C } } ( # ` x ) = 2 ) ) |
22 |
14 21
|
mpbird |
|- ( ph -> A. x e. ( Edg ` G ) ( # ` x ) = 2 ) |
23 |
|
usgruspgrb |
|- ( G e. USGraph <-> ( G e. USPGraph /\ A. x e. ( Edg ` G ) ( # ` x ) = 2 ) ) |
24 |
7 22 23
|
sylanbrc |
|- ( ph -> G e. USGraph ) |