Step |
Hyp |
Ref |
Expression |
1 |
|
uspgr1e.v |
|- V = ( Vtx ` G ) |
2 |
|
uspgr1e.a |
|- ( ph -> A e. X ) |
3 |
|
uspgr1e.b |
|- ( ph -> B e. V ) |
4 |
|
uspgr1e.c |
|- ( ph -> C e. V ) |
5 |
|
uspgr1e.e |
|- ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) |
6 |
|
prex |
|- { B , C } e. _V |
7 |
6
|
snid |
|- { B , C } e. { { B , C } } |
8 |
|
f1sng |
|- ( ( A e. X /\ { B , C } e. { { B , C } } ) -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) |
9 |
2 7 8
|
sylancl |
|- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } ) |
10 |
3 4
|
prssd |
|- ( ph -> { B , C } C_ V ) |
11 |
10 1
|
sseqtrdi |
|- ( ph -> { B , C } C_ ( Vtx ` G ) ) |
12 |
6
|
elpw |
|- ( { B , C } e. ~P ( Vtx ` G ) <-> { B , C } C_ ( Vtx ` G ) ) |
13 |
11 12
|
sylibr |
|- ( ph -> { B , C } e. ~P ( Vtx ` G ) ) |
14 |
13 3
|
upgr1elem |
|- ( ph -> { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
15 |
|
f1ss |
|- ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
16 |
9 14 15
|
syl2anc |
|- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
17 |
6
|
a1i |
|- ( ph -> { B , C } e. _V ) |
18 |
17 3
|
upgr1elem |
|- ( ph -> { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
19 |
|
f1ss |
|- ( ( { <. A , { B , C } >. } : { A } -1-1-> { { B , C } } /\ { { B , C } } C_ { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
20 |
9 18 19
|
syl2anc |
|- ( ph -> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
21 |
|
f1dm |
|- ( { <. A , { B , C } >. } : { A } -1-1-> { x e. ( _V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom { <. A , { B , C } >. } = { A } ) |
22 |
|
f1eq2 |
|- ( dom { <. A , { B , C } >. } = { A } -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
23 |
20 21 22
|
3syl |
|- ( ph -> ( { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : { A } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
24 |
16 23
|
mpbird |
|- ( ph -> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
25 |
5
|
dmeqd |
|- ( ph -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) |
26 |
|
eqidd |
|- ( ph -> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } = { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
27 |
5 25 26
|
f1eq123d |
|- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
28 |
24 27
|
mpbird |
|- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
29 |
1
|
1vgrex |
|- ( B e. V -> G e. _V ) |
30 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
31 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
32 |
30 31
|
isuspgr |
|- ( G e. _V -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
33 |
3 29 32
|
3syl |
|- ( ph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
34 |
28 33
|
mpbird |
|- ( ph -> G e. USPGraph ) |