| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
| 2 |
|
edgusgr |
|- ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ ( # ` e ) = 2 ) ) |
| 3 |
2
|
simprd |
|- ( ( G e. USGraph /\ e e. ( Edg ` G ) ) -> ( # ` e ) = 2 ) |
| 4 |
3
|
ralrimiva |
|- ( G e. USGraph -> A. e e. ( Edg ` G ) ( # ` e ) = 2 ) |
| 5 |
1 4
|
jca |
|- ( G e. USGraph -> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |
| 6 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 7 |
6
|
a1i |
|- ( G e. USPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 8 |
7
|
raleqdv |
|- ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 <-> A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) ) |
| 9 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 10 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 11 |
9 10
|
uspgrf |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 12 |
|
f1f |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 13 |
12
|
frnd |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 14 |
|
ssel2 |
|- ( ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ y e. ran ( iEdg ` G ) ) -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 15 |
14
|
expcom |
|- ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 16 |
|
fveqeq2 |
|- ( e = y -> ( ( # ` e ) = 2 <-> ( # ` y ) = 2 ) ) |
| 17 |
16
|
rspcv |
|- ( y e. ran ( iEdg ` G ) -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( # ` y ) = 2 ) ) |
| 18 |
|
fveq2 |
|- ( x = y -> ( # ` x ) = ( # ` y ) ) |
| 19 |
18
|
breq1d |
|- ( x = y -> ( ( # ` x ) <_ 2 <-> ( # ` y ) <_ 2 ) ) |
| 20 |
19
|
elrab |
|- ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) ) |
| 21 |
|
eldifi |
|- ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> y e. ~P ( Vtx ` G ) ) |
| 22 |
21
|
anim1i |
|- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) |
| 23 |
|
fveqeq2 |
|- ( x = y -> ( ( # ` x ) = 2 <-> ( # ` y ) = 2 ) ) |
| 24 |
23
|
elrab |
|- ( y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } <-> ( y e. ~P ( Vtx ` G ) /\ ( # ` y ) = 2 ) ) |
| 25 |
22 24
|
sylibr |
|- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) = 2 ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 26 |
25
|
ex |
|- ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 27 |
26
|
adantr |
|- ( ( y e. ( ~P ( Vtx ` G ) \ { (/) } ) /\ ( # ` y ) <_ 2 ) -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 28 |
20 27
|
sylbi |
|- ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( ( # ` y ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 29 |
17 28
|
syl9 |
|- ( y e. ran ( iEdg ` G ) -> ( y e. { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 30 |
15 29
|
syld |
|- ( y e. ran ( iEdg ` G ) -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 31 |
30
|
com13 |
|- ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) ) |
| 32 |
31
|
imp |
|- ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( y e. ran ( iEdg ` G ) -> y e. { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 33 |
32
|
ssrdv |
|- ( ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 34 |
33
|
ex |
|- ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 35 |
13 34
|
mpan9 |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 36 |
|
f1ssr |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 37 |
35 36
|
syldan |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 38 |
37
|
ex |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 39 |
11 38
|
syl |
|- ( G e. USPGraph -> ( A. e e. ran ( iEdg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 40 |
8 39
|
sylbid |
|- ( G e. USPGraph -> ( A. e e. ( Edg ` G ) ( # ` e ) = 2 -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 41 |
40
|
imp |
|- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 42 |
9 10
|
isusgrs |
|- ( G e. USPGraph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 43 |
42
|
adantr |
|- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) ) |
| 44 |
41 43
|
mpbird |
|- ( ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) -> G e. USGraph ) |
| 45 |
5 44
|
impbii |
|- ( G e. USGraph <-> ( G e. USPGraph /\ A. e e. ( Edg ` G ) ( # ` e ) = 2 ) ) |