| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
| 2 |
|
edgusgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 3 |
2
|
simprd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 𝑒 ) = 2 ) |
| 4 |
3
|
ralrimiva |
⊢ ( 𝐺 ∈ USGraph → ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) |
| 5 |
1 4
|
jca |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 6 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 7 |
6
|
a1i |
⊢ ( 𝐺 ∈ USPGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 8 |
7
|
raleqdv |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ↔ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 11 |
9 10
|
uspgrf |
⊢ ( 𝐺 ∈ USPGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 |
|
f1f |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 13 |
12
|
frnd |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 14 |
|
ssel2 |
⊢ ( ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) ) → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 15 |
14
|
expcom |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 16 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑦 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 17 |
16
|
rspcv |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
| 19 |
18
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
| 20 |
19
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) ) |
| 21 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 22 |
21
|
anim1i |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 23 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 24 |
23
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) ) |
| 25 |
22 24
|
sylibr |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) = 2 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 26 |
25
|
ex |
⊢ ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑦 ) ≤ 2 ) → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 28 |
20 27
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ( ♯ ‘ 𝑦 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 29 |
17 28
|
syl9 |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( 𝑦 ∈ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 30 |
15 29
|
syld |
⊢ ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 31 |
30
|
com13 |
⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ( 𝑦 ∈ ran ( iEdg ‘ 𝐺 ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 33 |
32
|
ssrdv |
⊢ ( ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 34 |
33
|
ex |
⊢ ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 35 |
13 34
|
mpan9 |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 36 |
|
f1ssr |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 37 |
35 36
|
syldan |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ∧ ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 38 |
37
|
ex |
⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 39 |
11 38
|
syl |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 40 |
8 39
|
sylbid |
⊢ ( 𝐺 ∈ USPGraph → ( ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 41 |
40
|
imp |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 42 |
9 10
|
isusgrs |
⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 44 |
41 43
|
mpbird |
⊢ ( ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) → 𝐺 ∈ USGraph ) |
| 45 |
5 44
|
impbii |
⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ∀ 𝑒 ∈ ( Edg ‘ 𝐺 ) ( ♯ ‘ 𝑒 ) = 2 ) ) |