Metamath Proof Explorer


Theorem 1hegrvtxdg1

Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 23-Feb-2021)

Ref Expression
Hypotheses 1hegrvtxdg1.a
|- ( ph -> A e. X )
1hegrvtxdg1.b
|- ( ph -> B e. V )
1hegrvtxdg1.c
|- ( ph -> C e. V )
1hegrvtxdg1.n
|- ( ph -> B =/= C )
1hegrvtxdg1.x
|- ( ph -> E e. ~P V )
1hegrvtxdg1.i
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } )
1hegrvtxdg1.e
|- ( ph -> { B , C } C_ E )
1hegrvtxdg1.v
|- ( ph -> ( Vtx ` G ) = V )
Assertion 1hegrvtxdg1
|- ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 )

Proof

Step Hyp Ref Expression
1 1hegrvtxdg1.a
 |-  ( ph -> A e. X )
2 1hegrvtxdg1.b
 |-  ( ph -> B e. V )
3 1hegrvtxdg1.c
 |-  ( ph -> C e. V )
4 1hegrvtxdg1.n
 |-  ( ph -> B =/= C )
5 1hegrvtxdg1.x
 |-  ( ph -> E e. ~P V )
6 1hegrvtxdg1.i
 |-  ( ph -> ( iEdg ` G ) = { <. A , E >. } )
7 1hegrvtxdg1.e
 |-  ( ph -> { B , C } C_ E )
8 1hegrvtxdg1.v
 |-  ( ph -> ( Vtx ` G ) = V )
9 prid1g
 |-  ( B e. V -> B e. { B , C } )
10 2 9 syl
 |-  ( ph -> B e. { B , C } )
11 7 10 sseldd
 |-  ( ph -> B e. E )
12 prid2g
 |-  ( C e. V -> C e. { B , C } )
13 3 12 syl
 |-  ( ph -> C e. { B , C } )
14 7 13 sseldd
 |-  ( ph -> C e. E )
15 5 11 14 4 nehash2
 |-  ( ph -> 2 <_ ( # ` E ) )
16 6 8 1 2 5 11 15 1hevtxdg1
 |-  ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 )