Step |
Hyp |
Ref |
Expression |
1 |
|
nehash2.p |
|- ( ph -> P e. V ) |
2 |
|
nehash2.a |
|- ( ph -> A e. P ) |
3 |
|
nehash2.b |
|- ( ph -> B e. P ) |
4 |
|
nehash2.1 |
|- ( ph -> A =/= B ) |
5 |
|
hashprg |
|- ( ( A e. P /\ B e. P ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
6 |
2 3 5
|
syl2anc |
|- ( ph -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
7 |
4 6
|
mpbid |
|- ( ph -> ( # ` { A , B } ) = 2 ) |
8 |
2 3
|
prssd |
|- ( ph -> { A , B } C_ P ) |
9 |
|
hashss |
|- ( ( P e. V /\ { A , B } C_ P ) -> ( # ` { A , B } ) <_ ( # ` P ) ) |
10 |
1 8 9
|
syl2anc |
|- ( ph -> ( # ` { A , B } ) <_ ( # ` P ) ) |
11 |
7 10
|
eqbrtrrd |
|- ( ph -> 2 <_ ( # ` P ) ) |