Metamath Proof Explorer


Theorem 1one2o

Description: Ordinal one is not ordinal two. Analogous to 1ne2 . (Contributed by AV, 17-Oct-2023)

Ref Expression
Assertion 1one2o
|- 1o =/= 2o

Proof

Step Hyp Ref Expression
1 1onn
 |-  1o e. _om
2 omsucne
 |-  ( 1o e. _om -> 1o =/= suc 1o )
3 1 2 ax-mp
 |-  1o =/= suc 1o
4 df-2o
 |-  2o = suc 1o
5 3 4 neeqtrri
 |-  1o =/= 2o