Metamath Proof Explorer


Theorem 1trld

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 1wlkd.p
|- P = <" X Y ">
1wlkd.f
|- F = <" J ">
1wlkd.x
|- ( ph -> X e. V )
1wlkd.y
|- ( ph -> Y e. V )
1wlkd.l
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
1wlkd.j
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
1wlkd.v
|- V = ( Vtx ` G )
1wlkd.i
|- I = ( iEdg ` G )
Assertion 1trld
|- ( ph -> F ( Trails ` G ) P )

Proof

Step Hyp Ref Expression
1 1wlkd.p
 |-  P = <" X Y ">
2 1wlkd.f
 |-  F = <" J ">
3 1wlkd.x
 |-  ( ph -> X e. V )
4 1wlkd.y
 |-  ( ph -> Y e. V )
5 1wlkd.l
 |-  ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
6 1wlkd.j
 |-  ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
7 1wlkd.v
 |-  V = ( Vtx ` G )
8 1wlkd.i
 |-  I = ( iEdg ` G )
9 1 2 3 4 5 6 7 8 1wlkd
 |-  ( ph -> F ( Walks ` G ) P )
10 funcnvs1
 |-  Fun `' <" J ">
11 2 cnveqi
 |-  `' F = `' <" J ">
12 11 funeqi
 |-  ( Fun `' F <-> Fun `' <" J "> )
13 10 12 mpbir
 |-  Fun `' F
14 istrl
 |-  ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) )
15 9 13 14 sylanblrc
 |-  ( ph -> F ( Trails ` G ) P )