Metamath Proof Explorer


Theorem 1trld

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
1wlkd.x ( 𝜑𝑋𝑉 )
1wlkd.y ( 𝜑𝑌𝑉 )
1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
1wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
1wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion 1trld ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )

Proof

Step Hyp Ref Expression
1 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
2 1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
3 1wlkd.x ( 𝜑𝑋𝑉 )
4 1wlkd.y ( 𝜑𝑌𝑉 )
5 1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
6 1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
7 1wlkd.v 𝑉 = ( Vtx ‘ 𝐺 )
8 1wlkd.i 𝐼 = ( iEdg ‘ 𝐺 )
9 1 2 3 4 5 6 7 8 1wlkd ( 𝜑𝐹 ( Walks ‘ 𝐺 ) 𝑃 )
10 funcnvs1 Fun ⟨“ 𝐽 ”⟩
11 2 cnveqi 𝐹 = ⟨“ 𝐽 ”⟩
12 11 funeqi ( Fun 𝐹 ↔ Fun ⟨“ 𝐽 ”⟩ )
13 10 12 mpbir Fun 𝐹
14 istrl ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun 𝐹 ) )
15 9 13 14 sylanblrc ( 𝜑𝐹 ( Trails ‘ 𝐺 ) 𝑃 )