Metamath Proof Explorer


Theorem 1trld

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 1wlkd.p P = ⟨“ XY ”⟩
1wlkd.f F = ⟨“ J ”⟩
1wlkd.x φ X V
1wlkd.y φ Y V
1wlkd.l φ X = Y I J = X
1wlkd.j φ X Y X Y I J
1wlkd.v V = Vtx G
1wlkd.i I = iEdg G
Assertion 1trld φ F Trails G P

Proof

Step Hyp Ref Expression
1 1wlkd.p P = ⟨“ XY ”⟩
2 1wlkd.f F = ⟨“ J ”⟩
3 1wlkd.x φ X V
4 1wlkd.y φ Y V
5 1wlkd.l φ X = Y I J = X
6 1wlkd.j φ X Y X Y I J
7 1wlkd.v V = Vtx G
8 1wlkd.i I = iEdg G
9 1 2 3 4 5 6 7 8 1wlkd φ F Walks G P
10 funcnvs1 Fun ⟨“ J ”⟩ -1
11 2 cnveqi F -1 = ⟨“ J ”⟩ -1
12 11 funeqi Fun F -1 Fun ⟨“ J ”⟩ -1
13 10 12 mpbir Fun F -1
14 istrl F Trails G P F Walks G P Fun F -1
15 9 13 14 sylanblrc φ F Trails G P