| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax6e |  |-  E. z z = x | 
						
							| 2 |  | nfnae |  |-  F/ z -. A. w w = z | 
						
							| 3 |  | nfnae |  |-  F/ z -. A. w w = x | 
						
							| 4 | 2 3 | nfan |  |-  F/ z ( -. A. w w = z /\ -. A. w w = x ) | 
						
							| 5 |  | nfeqf |  |-  ( ( -. A. w w = z /\ -. A. w w = x ) -> F/ w z = x ) | 
						
							| 6 |  | pm3.21 |  |-  ( w = y -> ( z = x -> ( z = x /\ w = y ) ) ) | 
						
							| 7 | 5 6 | spimed |  |-  ( ( -. A. w w = z /\ -. A. w w = x ) -> ( z = x -> E. w ( z = x /\ w = y ) ) ) | 
						
							| 8 | 4 7 | eximd |  |-  ( ( -. A. w w = z /\ -. A. w w = x ) -> ( E. z z = x -> E. z E. w ( z = x /\ w = y ) ) ) | 
						
							| 9 | 1 8 | mpi |  |-  ( ( -. A. w w = z /\ -. A. w w = x ) -> E. z E. w ( z = x /\ w = y ) ) | 
						
							| 10 | 9 | ex |  |-  ( -. A. w w = z -> ( -. A. w w = x -> E. z E. w ( z = x /\ w = y ) ) ) | 
						
							| 11 |  | ax6e |  |-  E. z z = y | 
						
							| 12 |  | nfae |  |-  F/ z A. w w = x | 
						
							| 13 |  | equvini |  |-  ( z = y -> E. w ( z = w /\ w = y ) ) | 
						
							| 14 |  | equtrr |  |-  ( w = x -> ( z = w -> z = x ) ) | 
						
							| 15 | 14 | anim1d |  |-  ( w = x -> ( ( z = w /\ w = y ) -> ( z = x /\ w = y ) ) ) | 
						
							| 16 | 15 | aleximi |  |-  ( A. w w = x -> ( E. w ( z = w /\ w = y ) -> E. w ( z = x /\ w = y ) ) ) | 
						
							| 17 | 13 16 | syl5 |  |-  ( A. w w = x -> ( z = y -> E. w ( z = x /\ w = y ) ) ) | 
						
							| 18 | 12 17 | eximd |  |-  ( A. w w = x -> ( E. z z = y -> E. z E. w ( z = x /\ w = y ) ) ) | 
						
							| 19 | 11 18 | mpi |  |-  ( A. w w = x -> E. z E. w ( z = x /\ w = y ) ) | 
						
							| 20 | 10 19 | pm2.61d2 |  |-  ( -. A. w w = z -> E. z E. w ( z = x /\ w = y ) ) |