Metamath Proof Explorer


Theorem 2exeu

Description: Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2exeuv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion 2exeu
|- ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph )

Proof

Step Hyp Ref Expression
1 eumo
 |-  ( E! x E. y ph -> E* x E. y ph )
2 euex
 |-  ( E! y ph -> E. y ph )
3 2 moimi
 |-  ( E* x E. y ph -> E* x E! y ph )
4 1 3 syl
 |-  ( E! x E. y ph -> E* x E! y ph )
5 2euex
 |-  ( E! y E. x ph -> E. x E! y ph )
6 4 5 anim12ci
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> ( E. x E! y ph /\ E* x E! y ph ) )
7 df-eu
 |-  ( E! x E! y ph <-> ( E. x E! y ph /\ E* x E! y ph ) )
8 6 7 sylibr
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph )