Metamath Proof Explorer


Theorem 2exeuv

Description: Double existential uniqueness implies double unique existential quantification. Version of 2exeu with x and y distinct, but not requiring ax-13 . (Contributed by NM, 3-Dec-2001) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2exeuv
|- ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph )

Proof

Step Hyp Ref Expression
1 eumo
 |-  ( E! x E. y ph -> E* x E. y ph )
2 euex
 |-  ( E! y ph -> E. y ph )
3 2 moimi
 |-  ( E* x E. y ph -> E* x E! y ph )
4 1 3 syl
 |-  ( E! x E. y ph -> E* x E! y ph )
5 2euexv
 |-  ( E! y E. x ph -> E. x E! y ph )
6 4 5 anim12ci
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> ( E. x E! y ph /\ E* x E! y ph ) )
7 df-eu
 |-  ( E! x E! y ph <-> ( E. x E! y ph /\ E* x E! y ph ) )
8 6 7 sylibr
 |-  ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph )