Metamath Proof Explorer


Theorem 2mos

Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005)

Ref Expression
Hypothesis 2mos.1
|- ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
Assertion 2mos
|- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) )

Proof

Step Hyp Ref Expression
1 2mos.1
 |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) )
2 2mo
 |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) )
3 nfv
 |-  F/ y x = z
4 3 sbrim
 |-  ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> [ w / y ] ph ) )
5 1 expcom
 |-  ( y = w -> ( x = z -> ( ph <-> ps ) ) )
6 5 pm5.74d
 |-  ( y = w -> ( ( x = z -> ph ) <-> ( x = z -> ps ) ) )
7 6 sbievw
 |-  ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> ps ) )
8 4 7 bitr3i
 |-  ( ( x = z -> [ w / y ] ph ) <-> ( x = z -> ps ) )
9 8 pm5.74ri
 |-  ( x = z -> ( [ w / y ] ph <-> ps ) )
10 9 sbievw
 |-  ( [ z / x ] [ w / y ] ph <-> ps )
11 10 anbi2i
 |-  ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) )
12 11 imbi1i
 |-  ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) )
13 12 2albii
 |-  ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) )
14 13 2albii
 |-  ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) )
15 2 14 bitri
 |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) )