| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2mos.1 |  |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) | 
						
							| 2 |  | 2mo |  |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) ) | 
						
							| 3 | 1 | 2sbievw |  |-  ( [ z / x ] [ w / y ] ph <-> ps ) | 
						
							| 4 | 3 | anbi2i |  |-  ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) ) | 
						
							| 5 | 4 | imbi1i |  |-  ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 6 | 5 | 2albii |  |-  ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 7 | 6 | 2albii |  |-  ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 8 | 2 7 | bitri |  |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |