| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2mos.1 |  |-  ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) | 
						
							| 2 |  | 2mo |  |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) ) | 
						
							| 3 |  | nfv |  |-  F/ y x = z | 
						
							| 4 | 3 | sbrim |  |-  ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> [ w / y ] ph ) ) | 
						
							| 5 | 1 | expcom |  |-  ( y = w -> ( x = z -> ( ph <-> ps ) ) ) | 
						
							| 6 | 5 | pm5.74d |  |-  ( y = w -> ( ( x = z -> ph ) <-> ( x = z -> ps ) ) ) | 
						
							| 7 | 6 | sbievw |  |-  ( [ w / y ] ( x = z -> ph ) <-> ( x = z -> ps ) ) | 
						
							| 8 | 4 7 | bitr3i |  |-  ( ( x = z -> [ w / y ] ph ) <-> ( x = z -> ps ) ) | 
						
							| 9 | 8 | pm5.74ri |  |-  ( x = z -> ( [ w / y ] ph <-> ps ) ) | 
						
							| 10 | 9 | sbievw |  |-  ( [ z / x ] [ w / y ] ph <-> ps ) | 
						
							| 11 | 10 | anbi2i |  |-  ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) ) | 
						
							| 12 | 11 | imbi1i |  |-  ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 13 | 12 | 2albii |  |-  ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 14 | 13 | 2albii |  |-  ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) | 
						
							| 15 | 2 14 | bitri |  |-  ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |