| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2mos.1 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | 2mo | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  =  𝑧 | 
						
							| 4 | 3 | sbrim | ⊢ ( [ 𝑤  /  𝑦 ] ( 𝑥  =  𝑧  →  𝜑 )  ↔  ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 5 | 1 | expcom | ⊢ ( 𝑦  =  𝑤  →  ( 𝑥  =  𝑧  →  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 6 | 5 | pm5.74d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑥  =  𝑧  →  𝜑 )  ↔  ( 𝑥  =  𝑧  →  𝜓 ) ) ) | 
						
							| 7 | 6 | sbievw | ⊢ ( [ 𝑤  /  𝑦 ] ( 𝑥  =  𝑧  →  𝜑 )  ↔  ( 𝑥  =  𝑧  →  𝜓 ) ) | 
						
							| 8 | 4 7 | bitr3i | ⊢ ( ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ( 𝑥  =  𝑧  →  𝜓 ) ) | 
						
							| 9 | 8 | pm5.74ri | ⊢ ( 𝑥  =  𝑧  →  ( [ 𝑤  /  𝑦 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 10 | 9 | sbievw | ⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  𝜓 ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 12 | 11 | imbi1i | ⊢ ( ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 13 | 12 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 14 | 13 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 15 | 2 14 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) |