| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2mo2 | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nfmo1 | 
							⊢ Ⅎ 𝑥 ∃* 𝑥 ∃ 𝑦 𝜑  | 
						
						
							| 3 | 
							
								
							 | 
							nfe1 | 
							⊢ Ⅎ 𝑥 ∃ 𝑥 𝜑  | 
						
						
							| 4 | 
							
								3
							 | 
							nfmov | 
							⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 𝜑  | 
						
						
							| 5 | 
							
								2 4
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  | 
						
						
							| 6 | 
							
								
							 | 
							nfe1 | 
							⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑  | 
						
						
							| 7 | 
							
								6
							 | 
							nfmov | 
							⊢ Ⅎ 𝑦 ∃* 𝑥 ∃ 𝑦 𝜑  | 
						
						
							| 8 | 
							
								
							 | 
							nfmo1 | 
							⊢ Ⅎ 𝑦 ∃* 𝑦 ∃ 𝑥 𝜑  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nfan | 
							⊢ Ⅎ 𝑦 ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  | 
						
						
							| 10 | 
							
								
							 | 
							19.8a | 
							⊢ ( 𝜑  →  ∃ 𝑦 𝜑 )  | 
						
						
							| 11 | 
							
								
							 | 
							spsbe | 
							⊢ ( [ 𝑤  /  𝑦 ] 𝜑  →  ∃ 𝑦 𝜑 )  | 
						
						
							| 12 | 
							
								11
							 | 
							sbimi | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  [ 𝑧  /  𝑥 ] ∃ 𝑦 𝜑 )  | 
						
						
							| 13 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ∃ 𝑦 𝜑  | 
						
						
							| 14 | 
							
								13
							 | 
							mo3 | 
							⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑  ∧  [ 𝑧  /  𝑥 ] ∃ 𝑦 𝜑 )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimpi | 
							⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑  →  ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑  ∧  [ 𝑧  /  𝑥 ] ∃ 𝑦 𝜑 )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							19.21bbi | 
							⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑  →  ( ( ∃ 𝑦 𝜑  ∧  [ 𝑧  /  𝑥 ] ∃ 𝑦 𝜑 )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 17 | 
							
								10 12 16
							 | 
							syl2ani | 
							⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑  →  ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  𝑥  =  𝑧 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							19.8a | 
							⊢ ( 𝜑  →  ∃ 𝑥 𝜑 )  | 
						
						
							| 19 | 
							
								
							 | 
							sbcom2 | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑤  /  𝑦 ] [ 𝑧  /  𝑥 ] 𝜑 )  | 
						
						
							| 20 | 
							
								
							 | 
							spsbe | 
							⊢ ( [ 𝑧  /  𝑥 ] 𝜑  →  ∃ 𝑥 𝜑 )  | 
						
						
							| 21 | 
							
								20
							 | 
							sbimi | 
							⊢ ( [ 𝑤  /  𝑦 ] [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑤  /  𝑦 ] ∃ 𝑥 𝜑 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sylbi | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  [ 𝑤  /  𝑦 ] ∃ 𝑥 𝜑 )  | 
						
						
							| 23 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 ∃ 𝑥 𝜑  | 
						
						
							| 24 | 
							
								23
							 | 
							mo3 | 
							⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑  ∧  [ 𝑤  /  𝑦 ] ∃ 𝑥 𝜑 )  →  𝑦  =  𝑤 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpi | 
							⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑  →  ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑  ∧  [ 𝑤  /  𝑦 ] ∃ 𝑥 𝜑 )  →  𝑦  =  𝑤 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							19.21bbi | 
							⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑  →  ( ( ∃ 𝑥 𝜑  ∧  [ 𝑤  /  𝑦 ] ∃ 𝑥 𝜑 )  →  𝑦  =  𝑤 ) )  | 
						
						
							| 27 | 
							
								18 22 26
							 | 
							syl2ani | 
							⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑  →  ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  𝑦  =  𝑤 ) )  | 
						
						
							| 28 | 
							
								17 27
							 | 
							anim12ii | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  →  ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 29 | 
							
								9 28
							 | 
							alrimi | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  →  ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 30 | 
							
								5 29
							 | 
							alrimi | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							alrimivv | 
							⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑  ∧  ∃* 𝑦 ∃ 𝑥 𝜑 )  →  ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 32 | 
							
								1 31
							 | 
							sylbir | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							nfs1v | 
							⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  | 
						
						
							| 34 | 
							
								
							 | 
							nfs1v | 
							⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑  | 
						
						
							| 35 | 
							
								34
							 | 
							nfsbv | 
							⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  | 
						
						
							| 36 | 
							
								
							 | 
							pm3.21 | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ( 𝜑  →  ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							imim1d | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ( ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							alimd | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ( ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 39 | 
							
								33 38
							 | 
							alimd | 
							⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							com12 | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							aleximi | 
							⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							aleximi | 
							⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							2nexaln | 
							⊢ ( ¬  ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )  | 
						
						
							| 44 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝜑  | 
						
						
							| 45 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 𝜑  | 
						
						
							| 46 | 
							
								44 45
							 | 
							2sb8ef | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							xchnxbi | 
							⊢ ( ¬  ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )  | 
						
						
							| 48 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  𝜑  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							2alimi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							2eximi | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬  𝜑  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							19.23bi | 
							⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬  𝜑  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							19.23bi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ¬  𝜑  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 53 | 
							
								47 52
							 | 
							sylbi | 
							⊢ ( ¬  ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 54 | 
							
								42 53
							 | 
							pm2.61d1 | 
							⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 55 | 
							
								32 54
							 | 
							impbii | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							alrot4 | 
							⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							bitri | 
							⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑  ∧  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  |